

Virginia Master Naturalist Program Basic Training: Aquatic Ecology and Management Presentation Handout

*Authored by Michelle Prysby, Senior Extension Specialist and Virginia Master Naturalist Program Director,
Department of Forest Resources and Environmental Conservation, Virginia Tech*

Overview

This handout is meant to be used with Aquatic Ecology and Management training as part of the Virginia Master Naturalist Basic Training Course. It is designed to align with other Aquatic Ecology and Management curriculum materials found at <https://www.virginiamasternaturalist.org/training/basic-training/aquatic-ecology-and-management/>.

Aquatic Systems

Water cycle – All the water on Earth is found in the atmosphere, the ocean, surface waters such as rivers, ice and snow, and groundwater. It is always cycling among these places through processes such as precipitation, evaporation, runoff, groundwater flow, and condensation.

Watershed – A watershed is the area of land where all the water on it drains to the same place.

Groundwater – Water under the land's surface, existing in pores or cracks in soils and rocks. The water table is the top of the zone where the pores or crevices in the rock are fully saturated with water. Groundwater is naturally discharged through springs and into lakes, streams, and rivers, and recharged when there is enough precipitation to infiltrate back down through the soil. Aquifers are the permeable rocks in which groundwater is stored and moves through.

Lakes – Lakes are an example of *lentic*, or standing, waters.

- Virginia has only two natural lakes; most of what are called lakes in Virginia are human-made impoundments.

- Lakes are impacted by physical factors (e.g., shape, size, depth, transparency, turbidity, temperature), chemical factors (e.g., pH, dissolved oxygen), and biological factors (e.g., aquatic plants and phytoplankton, fish populations, decomposer populations)
- Deeper lakes may exhibit thermal stratification in summer and winter, when layers of water at different temperatures form, and turnover in spring and fall, when the layers mix again.

Streams – Streams are an example of lotic, or running, waters. Lotic waters are always transporting water, sediments, nutrients.

- Physical characteristics of streams include depth, width, and velocity. Base flow is the stream flow in dry weather resulting from groundwater seepage. Bankfull is the stream flow that fills the channel up to the floodplain.
- Chemical characteristics of streams include temperature, pH, and dissolved oxygen (DO). Healthier streams tend to be cooler, more neutral in pH, and higher in DO, but these characteristics vary with location and season.
- In-stream habitats include riffles (shallower, faster moving), pools (deeper, slower), and runs (moderate in depth and velocity)
- The riparian zone is the interface between the stream and the land. Vegetation there provides important habitat, shading, and nutrients to the stream.
- Biological characteristics of streams are frequently measured by benthic macroinvertebrates – invertebrates living at the bottom of aquatic habitats.
 - Pollution intolerant groups of macroinvertebrates include stoneflies, mayflies, most caddisflies, and gilled snails.

- Moderately intolerant groups include crayfish, amphipods, dragonflies, damselflies, hellgrammies, netspinning caddisflies, beetles, clams, and true flies.
- Pollution tolerant groups include worms, leeches, lunged snails, midges.
- Biological monitoring measures stream health by measuring the number and diversity of organisms found in these different tolerance groups.

Aquatic Resource Threats

Pollution – Point source pollution results from pollution released directly into a body of water from a single source. Non-point source pollution is the result of runoff throughout a watershed. Four main pollutant types are sediment, nutrients, pathogens, and toxins.

Aquatic invasives – Aquatic weeds such as hydrilla and benthic invertebrates such as zebra mussels.

Urbanization – Replacement of natural areas with a built environment that has impermeable surfaces. Results include increases in runoff, pollutants, water temperatures, erosion; plus decreases in DO, habitat, water table levels, stream flow in drought periods (Figure 1.).

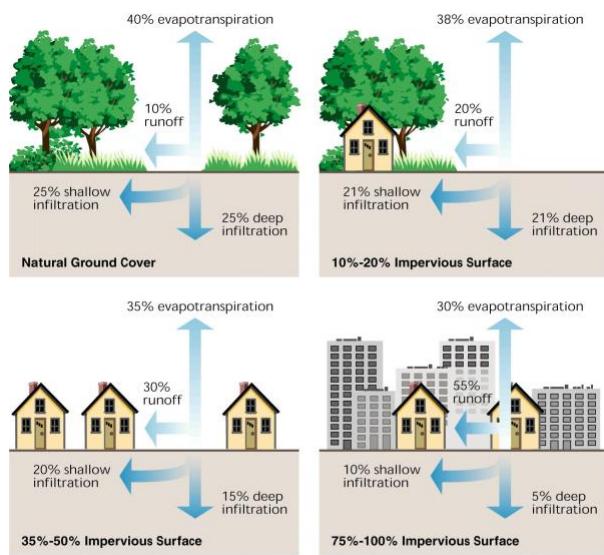


Figure 1. As impervious surfaces increase on the landscape, a greater percentage of precipitation runs off into surface waters and a lesser percentage infiltrates the groundwater. (Stream Corridor

Restoration: Principles, Processes, and Practices, 10/98, by the Federal Interagency Stream Restoration Working Group (FISRWG).)

Aquatic Resource Management

- Soil and Water Conservation Districts work with many landowners to carry out conservation projects and provide educational programs. Find which of the 47 SWCDs serves your community at <http://vaswcd.org>.
- The Dept. of Environmental Quality makes sure VA meets the requirements of the Clean Water Act and administers state laws and regulations to improve and protect our waterways, including groundwater. DEQ coordinates extensive monitoring of Virginia's waters, through their own employees and in collaboration with citizen monitoring groups. The 305(b)/303(d) water quality assessment report maps impaired waters, identifies pollution sources, and describes programs to improve water quality (Figure 2.)
- TMDL – Stands for Total Maximum Daily Load and is a “pollution diet plan” that lists amounts of allowed pollution, proportioned out to different sources for a given water body.
- Role of citizens – Every citizen can help by taking actions such as keeping debris and pollutants out of storm drains, limiting use of lawn and garden chemicals, controlling soil erosion, conserving water by reducing use, and reducing runoff by replacing turf with native plants.

Figure 2. Water quality monitoring leads to assessments of the health of the state's waters. When waters are impaired, a TMDL study is ordered. Once the study identifies pollution sources

and creates a "pollution diet" plan, control measures are implemented. Continued monitoring shows whether the control measures are effective (VA DEQ.)

Related Volunteer Projects for Virginia Master Naturalists

Education

- Lead educational programs for any age group about the importance of our ponds, lakes, and streams and what individuals can do to help them.
- Hold aquatic resource themed booths at community events and festivals
- Organize workshops to educate property owners about watershed-friendly landscaping and greener ways to protect their properties from erosion.
- Assist schools with Meaningful Watershed Educational Experiences, <https://vaswcd.org/mwee/>
- Conduct environmental education for youth or K-12 teachers as a Project Wet educator or facilitator, <https://www.vaaawa.org/page/project-wet-in-virginia>

Citizen Science

1. Water quality monitoring with VDEQ or local partners, <https://www.deq.virginia.gov/water/water-quality/monitoring/volunteer-monitoring>

Stewardship

2. Organize and lead clean-up events that get the public involved. See Clean the Bay Day (<http://www.cbf.org/events/clean-the-bay-day>) and Clean Virginia Waterways (<https://www.cleanvirginiawaterways.org>).
3. Plant riparian buffers on public lands.

Acknowledgements

Funding for the development of this Virginia Master Naturalist Basic Training module was provided by the Virginia Environmental Endowment.

Virginia Cooperative Extension is a partnership of Virginia Tech, Virginia State University, the U.S. Department of Agriculture (USDA), and local governments, and is an equal opportunity employer. For the full non-discrimination statement, please visit ext.vt.edu/accessibility.

2025